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1 Summary

This paper seeks to establish the concept that the analysis of high temporal resolution 
meteorological data adds value to the investigation of the effect of climatic variability on 
the prevalence and severity of agricultural pests and diseases. Specifically we attempt to 
improve disease potential maps of root rots in common beans, based on a combination of 
inherent susceptibility and the risk of exposure to critical weather events. We achieve this 
using simulated datasets of daily rainfall to assess the probability of heavy rainfall events 
at particular times during the cropping season. We then validate these simulated events 
with observations from meteorological stations in East Africa. We also assess the utility
of remotely sensed daily rainfall estimates in near real time for the purposes of updating 
the risks of these events over large areas and for providing warnings of potential disease 
outbreaks.

We find that simulated rainfall data provide the means to assess risk over large areas but 
there are too few datasets of observed rainfall to definitively validate the probabilities of 
heavy-rainfall events generated using rainfall simulations such as those generated by 
MarkSim. We also find that selected satellite rainfall estimates are unable to predict 
observed rainfall events with any power, but data from a sufficiently dense network of 
rain gauges is not available in the region. Despite these problems we show that remotely 
sensed rainfall estimates may provide a more realistic assessment of rainfall over large 
areas where rainfall observations are not available, and alternative satellite estimates 
should be explored.

2 Introduction

Pests and diseases are a major cause of low productivity in crops and livestock worldwide 
(Oerke et al., 1995; ) and particularly in Sub Saharan Africa where there are few
resources to invest in protection in the form of pesticides, vaccines etc (Williamson et al., 
2008; Homewood et al, 2006; Otsyula et al., 2004).

A number of pest and disease outbreaks are triggered by climatic factors (Table 1). For
some biotic stresses the general seasonal conditions are most important while for others 
the timing of rainfall or dry spells within a season is crucial when they coincide with 
susceptible periods of plant or animal growth - such as in the case of aflatoxins
(Aspergillus spp.) in groundnuts (Arachis hypogaea). Risk management is an integral
component of coping with the effects of natural hazards (Baez and Mason, 2008) and the 
use of meteorological data is among the risk management strategies available to 
producers to help assess the probability of events that foster the transmission or 
prevalence of pests and diseases. The analysis and monitoring of extreme weather events, 
and where possible their prediction, can help researchers, extension agents, farmers and 
pastoralists invest in the most appropriate risk management strategies (Cooper et al., 
2008) and prepare for the effects of changes in climates (Garrett et al., 2009).



Table 1 somewhere here

In this paper we focus on one example of a disease which is triggered by particular 
climatic conditions. The fungal disease bean root rot complex (Pythium spp., Fusarium 
spp. phaseoli, Rhizoctonia solani) has a major impact on bean yields throughout its range 
in Africa (Otsyula, 1994). Each year, the disease affects the livelihoods of millions of 
people who depend on beans for food security and income (Wortmann et al., 1998).

The impact of the disease varies through time. In some years, incidence is relatively low, 
in others entire crops are wiped out (CIAT, 1992). The distribution and severity of the 
disease throughout the East African region is related to the intensity of bean cultivation, 
the human population density, soil properties and rainfall (Otsyula and Buruchara, 2001; 
Wortmann et al., 1998). The disease varies widely with location; one area may be 
disease-free while others are hit badly (Buruchara and Rusuku, 1992). This heterogeneity 
obstructs adaptation of protective practices, because broad remedies become cumbersome 
and inefficient (Ojiem, 2006). In addition protection may penalise yield or quality; 
resistant or tolerant bean varieties may not be preferred (Otsyula et al., 2003), or seed 
producers are unable to respond to demand for resistant varieties (Otsyula et al., 2004). 
Cultural practices to cope with disease risk respond slowly to variations in actual risk of 
disease or where causality is poorly understood (Spence, 2003), which may vary 
significantly during a season depending on growing season rainfall (CIAT, 1992).

Maps showing the importance of root rots were produced in 1998 based on expert 
knowledge and some modelling of soil, human population and farming system data 
(Wortmann et al., 1998), but climatic factors were not considered. Root rots infestation 
requires free water in the root-zone of the soil since the most important pathogen 
(Pythium spp) is water-borne (Pieczarka and Abawi, 1978). Research in Rwanda over 
three growing seasons observed that three-day rainfall totals of at least 50mm and up to 
130mm coincided with plant loss rates of up to 55% (of susceptible varieties). The one 
season where no 3-day rainfall events greater than 30mm were observed experienced far 
lower plant losses (CIAT, 1992). The timing of the events was crucial (Abawi et al., 
1985) with the period between 17 and 38 days after planting being the most sensitive
(Pers. Comm., Buruchara, 6th September 2005).

New datasets and tools developed since the creation of the original maps of root rot 
incidence allow for the more accurate representation of population and land use and for 
the simulation and analysis of daily weather events (Cooper et al., 2008; Jones et al., 
2002). 

The objectives of the research presented in this paper are twofold. The first objective is to 
produce disease potential maps, based on a combination of inherent susceptibility and the 
risk of exposure to critical weather events within a general vulnerability framework 
(Alwang et al., 2001). Susceptibility to root rots is determined by up to date and high 
resolution spatial datasets of human population density and the intensity of bean 



cultivation in bean producing areas of East Africa. Risk of exposure maps show the 
likelihood of experiencing rainfall events during specific periods of the growing season in 
susceptible areas. The output of this objective allows accurate targeting of resistant 
cultivars or other husbandry techniques throughout the region, and quantitative insights 
from new models showing current and likely future incidence.

The second objective is to assess the possibility of within season monitoring of rainfall 
events over large areas using satellite-based rainfall estimating instruments. This would 
offer a flexible basis on which to improve predictive models through the continued 
acquisition of rainfall data especially when combined with information on the severity of 
root rots in any particular area.

3 Materials and Methods

This study concentrated on the East African countries most affected by root rots in beans: 
Rwanda, Burundi, the Democratic Republic of the Congo, Uganda, Tanzania and Kenya.
Further targeting was achieved by the development of a new map of areas susceptible to 
root rots in beans based on population density and the intensity of bean cultivation.

The probability of experiencing heavy rainfall events in the early growing season was 
assessed at key locations within the susceptible areas using daily rainfall observations
simulated by the MarkSim (Jones et al., 2002) software and analyzed for high intensity 
events using the InStat + software (University of Reading, 2008). MarkSim has been 
applied in the region for crop simulation modeling (Jones and Thornton, 2000) but has 
not been used for the analysis of disease risk. The likelihood of simulated high rainfall 
events were then compared with rainfall observations from meteorological stations in 
Kenya, Uganda and Rwanda.

Finally satellite measurements were assessed for use in further validating the risk surfaces 
and for their suitability for in-season monitoring of rainfall events.

3.1 Assessing the risk of root rots in East African bean 
producing areas

3.1.1 Areas susceptible to bean root rots

The association between root rot severity and human population density, intensity of 
cultivation and soil properties were based on a model derived from data collected for the 
atlas of common bean production in Africa (Wortmann, et al., 1998). Bean producing 
areas have not been captured since 1998 and we assume that production areas have not 
changed markedly in East Africa relative the late 1990’s.

We have updated the original root rot map using more recent data on population density –
the Gridded Population of the World Version 3 (Center for International Earth Science 



Information Network, 2005) - and the SAGE Agricultural lands map for cropping 
intensity, based on the percentage of a 5 arc minute cell that is cropped (Ramankutty et 
al., 2008).Threshold values for crop intensity and human population density were used to 
further restrict the area of analysis. Values of 40% crop intensity and 200 persons per km2

were chosen. These were then combined using simple map algebra in ArcMap (ESRI) 
software to create a map showing areas with both high human population density and 
high bean crop intensity (Figure 1).

3.1.2 Risk of exposure to heavy rainfall events

Rainfall during the first few weeks of plant development has a spatial component but is 
difficult to capture using conventional maps of annual or monthly rainfall totals. 
Averages mask the variability of rainfalls within the year or month as well as the 
variation between years. To obtain a better indication of risk one must analyse daily 
weather data and specifically daily rainfall observations during the critical period 
immediately after germination.

Observations from meteorological stations are often not available, incomplete or in non-
susceptible locations. Sample locations were selected in areas susceptible to root rots in 
each bean producing area (Figure 2) and simulations of daily weather were generated for
99 years using the MarkSim Software. For each of the 24 locations the normal planting 
dates were identified using expert knowledge (Table 2) (pers. comm., Rubyogo 20th

December 2005, Chirwa 15th December 2005).

The daily rainfall data were exported from MarkSim and imported into the Instat+ 
software (University of Reading, 2008). The Instat+ software has analysis capabilities 
designed for climatic data, specifically the identification of specific events. The rules for 
assessing risk of root rot were more complex than traditional rainy events but a 
combination of these events allowed the calculation of risk. The first step was to define a 
monitoring period which started approximately 1 month before the normal planting dates 
and identify the start of rains; a figure of 20mm over two days was used for the onset of 
the rainy season. The next step was to determine the absence or presence of events with 
over 50mm over 2 days in the period between day 17 and day 38 (after the onset of 
rains), a more severe test – 100mm over three days was also used. Since all locations had 
bimodal rainfall patterns the test was applied to both rainy seasons in the calendar year
and the number of seasons where the rainfall events were experienced was recorded
(Table 2). MarkSim successfully simulated daily rainfall in all but one of the locations for 
which the software had no climate data.

Table 2 somewhere here

These frequencies were used to produce maps of risk over large areas when the point data 
were interpolated to produce a risk surface (Figure 3). The frequency values were 



interpolated in the ArcGIS software for all susceptible areas using inverse distance 
weighting with a distance decay power value of 2 and using 12 nearest neighbours.

3.2 Validation of exposure risk 

Little information has been collected on the frequency of root rot incidence in beans 
across East Africa. Data collected in Rwanda in the early 1990’s (Buruchara and Rusuku, 
1992) concentrated on yield loss rather than frequency, reports from this period showed 
that the severity of losses was greater in some regions in Rwanda than others, which 
might be due to differences in rainfall patterns. However differences between 
neighbouring fields were also observed which serves to remind that causality of incidence 
is complex, with soil fertility being another important factor.

3.2.1 Comparison between observed and simulated heavy-rainfall
events

Observed daily rainfall data were made available for this study in four locations in East
Africa: Katumani in Eastern Province in Kenya, Kabete in Central Province in Kenya, 
Namulonge in Central Uganda and Kigali in Rwanda (Figure 2). The longest time series 
available was for Katumani, where 41 years of continuous observations between 1961 
and 2001 were recorded. Daily rainfall amounts were observed for 30 years in Kabete, 32 
years in Namulonge and for 11 years at Kigali.

The observations were imported into the Instat + software and the same process followed 
as in section 3.1.2. to determine the number of heavy rainfall events during the post 
germination period. Additional simulations were generated using MarkSim at the same 
locations as the meteorological stations. At such sites MarkSim can use observed climatic 
normals for rainfall, or the values built in to the software. We decided to use those built-
in, to match the simulations at sites where there is no station (cf. Hartkamp et al., 2003).

3.3 TRMM validation of risk surfaces

Alternative sources of ‘observed’ daily rainfall are satellite based instruments that 
measure the characteristics of clouds to estimate rainfall on the ground. One of these 
sources – the Tropical Rainfall Measuring Mission (TRMM) – is assessed here as an 
alternative to ground measuring stations to validate the assessment of heavy-rainfall
events and to investigate the potential of remotely sensed rainfall estimates for in-season 
monitoring and early warning of root rot outbreaks.

The Tropical Rainfall Monitoring Mission has five principal instruments: a precipitation 
radar (PR), a microwave imager (TMI), a visible and infra-red scanner (VIRS), a cloud 
and earth radiant energy scanner (CERES), and a lightning imaging scanner (LIS) 
(NASA, 2006). The principal dataset used in this section is the daily rainfall estimates 



dataset derived from the 3B42 v6 algorithm which combines data from TRMM 
microwave and infra-red instruments (Huffman et al., 2007). The data are available from 
1998 and have a spatial resolution of 0.25º x 0.25º between latitudes of 50ºS and 50ºN.

Given the relatively small number of years that TRMM has been providing observations 
the source is not suitable for validating the probability of heavy-rainfall events in a 
season (using MarkSim simulated daily rainfall). Instead we assessed the quality of the 
TRMM daily rainfall data using rainfall observations from stations in just one country in 
East Africa – Rwanda.

Observed rainfall data from 5 stations of the Rwandan Meteorological Service (RMS)
were available and TRMM daily rainfall estimates data were extracted for the period 
1998-2008 for grid cells that coincided with the RMS stations. For the purposes of 
monitoring conditions conducive to root rots in beans the most appropriate indicator for 
validating the TRMM estimates was a three-day running rainfall total during the growing 
seasons. Rainfall records for Kigali airport meteorological station were complete for the 
period 1998-2008 while there were gaps for the stations at Gisenyi and Gikongoro and
serious gaps for Byumba (Table 3). Data for Kamembe airport had yet to be verified so 
were not analysed.

Table 3 somewhere here

We focussed the analysis on the start of the growing seasons which are between February 
and April inclusive and between September and November inclusive. Different rainfall
amounts were chosen ranging from 100mm over three days (which is rarely encountered) 
to 25mm over 3 days which was almost always exceeded.

4 Results

4.1 Risk of root rots in East African bean producing areas

4.1.1 Areas susceptible to bean root rots

The areas susceptible to bean root rots are concentrated in two main regions (a) the 
highlands of Rwanda, Burundi and South western Uganda, and; (b) the northern shore of 
lake Victoria and the highlands of western Kenya. There are other smaller areas scattered 
in Central and Eastern provinces of Kenya and in the Kilimanjaro massif in north-eastern 
Tanzania. In terms of the proportion of the bean areas in each country affected in terms of 
area the most susceptible was Rwanda while the least susceptible was DRC (Table 
4Error! Reference source not found.).

Table 4 somewhere here



Figure 1 somewhere here

Figure 2 somewhere here

4.1.2 Risk of exposure to heavy rainfall events

The locations with the highest risk of heavy rainfall events during the period immediately 
after germination are in southern Burundi, a small area in North-west Uganda, the 
Kakamega area of western Kenya and in Kitui in Eastern Province of Kenya. Areas with 
lower risk are in western Rwanda and south west Uganda. Despite a range of 
environments from humid to semi-arid the range of probabilities is not large, and 
surprisingly some of the locations with the highest probabilities of heavy-rainfall events 
(such as eastern Kenya and eastern Rwanda) do not have high seasonal rainfall totals.

Figure 3 somewhere here

4.2 Validation of exposure risk 

4.2.1 Comparison between observed and simulated heavy-rainfall
events

The differences between the numbers of seasons with heavy rainfall events in the 
susceptible period according to observed and simulated daily rainfall were not large and 
did not show consistency between locations or seasons (Table 5). For instance at
Katumani there were more ‘risky’ seasons according to the simulated data using 
MarkSim than with the observed data, this is also true in the case of Kigali. In contrast 
for Kabete there were more risky seasons using observed data than the simulated daily 
data for the main season but this was reversed in the second season – a similar pattern to 
the comparison at Namulonge.

Table 5 somewhere here

The comparison between the observed and simulated rainfall events is between two 
binomial distributions, where each season either experiences a heavy rainfall event or not. 
Our hypothesis was that the probability of the heavy rainfall event was the same for each 
distribution. This hypothesis was only rejected at the 5% confidence level for the second 
season at Katumani (Table 5).



4.3 TRMM validation of risk surfaces

Results are organised for each of the four stations in Rwanda: Kigali, Gisenyi, Gikongoro 
and Byumba. Greatest attention was paid to the results obtained from Kigali since it had 
the longest and best quality weather data available.

A plot of the 3-day running totals (calculated daily) from the TRMM and observed 
rainfall data at Kigali showed a lack of a clear relationship between the totals from 
TRMM and from meteorological stations (R2=0.204). The TRMM data give slightly 
higher 3-day totals although there are more extreme rainfall events (e.g. > 100mm) in the 
observed dataset.

Graphs were also produced for individual years, with a range of predictive capacities of
the observed cumulative rainfall using just TRMM estimates between R2=0.05 in 2008 
and 0.64 in 2002. 

These predictive models investigate the relationship between the TRMM wet events and 
the observed wet events on a daily basis, but they do not show the differences in the 
experience of at least one heavy rainfall event during the growing season. An alternative 
approach is to analyse threshold values of 3-day rainfall events in any particular growing 
season (i.e. the same as that used to examine the rainy events in the analysis of the 
TRMM data conducted previously by the authors).

The summary of the presence of different events (Table 6) shows that the amount of
trigger events is broadly similar between the observed and the TRMM rainfall data.
When the individual years are analysed separately the coincidence between the two 
datasets is not as strong, especially for the 50mm trigger rainfall events where the trigger 
rainfall amount is estimated correctly in only 55% of the 3 monthly periods. Observed 
data for Byumba station were only available for 2007 and 2008 limiting the power of the 
comparison with the TRMM data. More data were available for the station at Gisenyi but 
the number of matches is low compared to Kigali, with the number of false negatives 
very large. There are gaps in the observed rainfall data for Gikongoro, with only 2008, 
2003, 1999 and all but the first week of 1998 complete. All the other years have some 
months missing and only the second season in 2004 was complete. As with Gisenyi the 
number of false absences in Gikongoro is far greater than the false presences of heavy 
rainfall events. The seasonal totals of the observed rainfall were also greater than the 
TRMM estimates.

The TRMM therefore provides little power for predicting these three-day rainfall events 
at the meteorological stations.

Table 6 somewhere here



5 Discussion

The research presented in this paper outlines a new use of simulations of daily rainfall, 
and specifically a new use of the MarkSim software. The value of these simulated data is 
increased when they are combined with climatic statistical and spatial tools and they 
demonstrate the use of such data for targeting both strategic research and specific 
interventions to tackle crop pests and diseases. This research is particularly pertinent in 
the face of potential changes in rainfall patterns over the coming decades (van de Steeg et 
al., 2009).

Although no ‘ground truthing’ was possible in this study, the map of the probability of 
root rots appears consistent with the previous map of root rot severity (Wortmann, et al., 
1998). Nevertheless the revised map can be improved by using MarkSim simulations of 
daily rainfall over all the susceptible areas rather than interpolating between the 24 
locations that were sampled in this study as well as alternative interpolation methods such 
as kriging (e.g. Grimes et al., 1999). This will require a more automated procedure for the 
identification of heavy rainfall events. The variation in risk of heavy rainfall events 
shown here does not show a simple correlation with annual or seasonal rainfall averages 
and thus provides a novel tool for targeting the promotion of root rot resistant bean 
varieties and other cultural practices for modifying the soil structure and improving soil 
fertility. This tool can be modified for other pests and diseases and for other crops or 
agricultural technologies. Nevertheless the research here has shown that the spatial scale 
at which pests and diseases are manifest will limit the usefulness of the tool since
MarkSim currently has a spatial resolution of 18km. Differences in root rot incidence and 
severity within and between plots are due mainly to the build up of pathogens in the soil 
– which is linked to the soil fertility status and the cultivation history of a particular plot –
and whether a variety is resistant to root rots. 

Plant breeding for resistance to root rots has been ongoing within the Pan African Bean 
Research Alliance (PABRA), but there is often a trade-off between traits. In addition the
resources destined for crop improvement need to be targeted to those areas where 
particular constraints are most severe, both now and in the future. It is currently difficult 
to link the rainfall event probability map to actual incidence and severity of root rots in 
the region, due to a lack of routine monitoring of outbreaks of the disease. If monitoring 
were carried out it would allow for better calibration of the model and also an even better 
understanding of the risk. This understanding will be vital for modeling the incidence of 
root rots in beans under future climates, especially for areas where the disease is currently 
uncommon.

The validation of the MarkSim heavy rainfall events with rainfall observations from four
stations shows that the differences between the two sources were in most cases not 
statistically significant. Access to a longer series of observed rainfall data would be 
needed to comprehensively assess the simulated dataset in those areas where the 
differences between the observed and simulated datasets are large. We are unable to 
reject the hypothesis that the distributions of risky rainfall events are the same between 
the observed and simulated daily rainfall datasets. We therefore tentatively conclude that 



simulated daily rainfall can be used for producing these kinds of risk assessments, but 
that the validation could be improved by increasing the sample of meteorological 
stations.

The rainfall amounts over the two and three day time steps used in this analysis are 
derived from a combination of the probability of rain days as well as the amount of rain 
falling on a rainy day. The first of these is derived from the analysis of the daily data for 
the meteorological station used to define the climate type, while the amounts of rainfall 
depend on the monthly mean rainfall values. Within MarkSim there is the possibility of 
updating the monthly mean rainfall amounts for specific locations and further research 
could consider the use of summaries of observed data (climate normals) instead of the 
interpolated means which are in the MarkSim database. The thresholds for heavy-rainfall 
events are based on trials carried out in Rwanda and the results of the risk model are 
dependent on the rainfall threshold as well as the planting date. Further research should 
therefore assess the sensitivity of the model to both of these factors as well as the size of 
rainfall events simulated by the MarkSim software (e.g. Dixit et al., this issue). 
Specifically research is required on the effect of the gamma curves which are an essential 
characteristic of each type of climate within MarkSim and which define the probabilities 
of rainfall events.

The biggest problem for the comparison is the relatively short duration of the observed 
rainfall records, especially in Kigali which showed the largest differences between the 
two datasets. The other problem is the very small number of cases in the analysis which 
was restricted due to the lack of meteorological stations with available observed daily 
rainfall. Access to a larger set of meteorological observations would allow for a better 
assessment of the relationship.

Our study of four stations in Rwanda shows that rainfall estimates from TRMM satellite 
instruments are poor predictors of rainfall observations, coinciding with the findings of 
Dinku et al. (2008). The most complete set of rainfall observations were available for the 
Kigali Airport station. Of the six different trigger values the worst comparison was the 
50mm value, which was incorrectly estimated for 10 of the 22 seasons – either positively 
estimated when there was no event observed or not estimated when the ground station 
recorded the event. As the trigger value decreased the number of seasons when the value 
was estimated also increased, which is not surprising due to the frequent occurrence of 
these less intense rainfall events.

Comparisons at the other stations were less revealing because the numbers of complete 
seasons of observed rainfall were fewer than at Kigali. Both the stations in Gikongoro 
and Gisenyi were at the edge of the 25km x 25km TRMM cell, and given the small size 
of tropical thunderstorms it is possible that rainfall associated with cloud recorded by the 
TRMM sensor was not recorded at the meteorological station. Indeed, given the large 
decay in correlation of rainfall over relatively small distances in the tropics (Lebel et al., 
1992), especially over short periods the utility of a single rain gauge to represent a large 
area (such as those covered by TRMM pixels) is limited, and the TRMM may give a 
better estimate of areal rainfall. While the spatial variation in rainfall has been shown



over different time periods (Grimes and Pardo-Igúzquiza, 2010) there is no research on 
the spatial variation of these heavy rainfall events over short distances such as could be 
used to explain the differences between the TRMM areal estimates and the 
meteorological stations. The AGRHYMET cluster of rainfall gauges ( Lebel at al., 1992)
or the rain gauges managed by the Ethiopian National Meteorological Agency (Grimes 
and Pardo-Igúzquiza, 2010) offer such an opportunity to study the local differences in the 
frequency of heavy-rainfall events.

TRMM rainfall data are particularly suited to in-season rainfall monitoring due to the 
short time between data capture and publication. Typically the data are available the next 
day when using the TRMM Online Visualisation and Analysis System (TOVAS)4. The 
time period can be set so that cumulative seasonal totals are displayed (Figure 4Error! 
Reference source not found.) or for shorter periods to monitor within season events. 
These values would still need to be validated using observations although the time 
between observation, verification and publication would need to be improved. Alternative 
rainfall estimates from satellite exist, such as NASA’s Prediction Of World Energy 
Resources POWER5, but this has a considerable delay between capture and publishing 
and is thus currently not suited to in-season monitoring of rainfall. Other rainfall products 
estimated using satellite instruments include the Tropical Applications of Meteorological 
Satellites (TAMSAT) method applied to thermal infra-red imagery from the Meteosat 
platform (Thorne at al., 2001). The algorithm used in the TAMSAT method is locally 
calibrated and has performed well in Africa in comparison with more complex algorithms 
like those used to produce the TRMM rainfall estimates (Teo and Grimes, 2007). The
TAMSAT group provides routine products at 10-day, monthly and seasonal timescales;
the dekadal and monthly products are available from the EUMETSAT portal. The 
TAMSAT estimates thus offer some promise for in-season monitoring for root rots but 
would imply access to daily rainfall estimates. 

Figure 4 somewhere here.

To conclude, in this paper we have shown the value of long-term meteorological rainfall 
observations for assessing the risk of outbreaks of pests and diseases.  We have also 
shown that where data are sparse simulations may be are able to provide an acceptable 
alternative. More rainfall observations from meteorological stations are needed to check 
the validity of the results from the simulated data and hence to improve the confidence in 
the results from the simulations.   The methods used have shown that these data enable 
maps of areas susceptible to root rot in beans to be produced, by showing the long term 
probability of heavy rainfall events during a critical period after germination.  These, in 
turn, can help assess long term risks or can be used for early-warning within a particular 
season.

                                                
4 http://disc2.nascom.nasa.gov/Giovanni/tovas/

5 http://earth-www.larc.nasa.gov/power/
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8 Appendix

The process in the Instat+ software is as follows:

o In Excel run the INSTAT macro to get the MarkSim output in a format suitable for 
the Instat+ software.

o Import excel file into the Instat+ software (noting the MarkSim value for 9998 for 
February 29 which should be *** in the Instat+ software).

o Find the start of the rains in the main season – given a start date find days where the 
cumulative rainfall total over two days is equal or above 20mm.

o Get germination date – assume 10 days after onset of rains for planting, and a further 
7 days for germination, therefore add 17 days to start of rains.

o Get end of risk period – assume period of maximum risk 3 weeks after germination; 
therefore add 21 days to the germination date.

o Seek events – in the Instat+ software it is easier to search for events using the start of 
the rains procedure, we simply change the threshold value from 20mm over to 2 days 
to 50mm over 2 days or 100mm over three days.

o Record number of events – every event is logged; we sum the log of events and see 
how many years out of 99 are risky.6

                                                
6 Get the start of the rains, 20mm over 2 days after 60 days : RUN X1-X99;RANge 0.85;SUM  2  20;FIRst 60;DAYs X100

Check that the start of the rains is in the first season: X101 = -(X100<=180)

Get the start of the risky period : X102 = (X100+17) * X101

Get the end of the risky period: X103 = (X102+21) * X101

Get the first day that experiences 100mm (over this and the previous 2 days) : RUN X1-X99;RANge 0.85;SUM  3  100;FIRst 
X102;DAYs X104

Get the first day that experiences 50mm (over this and the previous day): RUN X1-X99;RANge 0.85;SUM  2   50;FIRst X102;DAYs 
X105

If the day when 100mm was recorded over 3 days is in the risky period then give the value 1 (where FALSE = 0 and TRUE = -1 in 
INSTAT) : X106 = -(X104<=X103)+(X104=0)



                                                                                                                                                
If the day when 50mm was recorded over 2 days is in the risky period then give the value 1 (where FALSE = 0 and TRUE = -1 in 
INSTAT): X107 = -(X105<=X103)+(X105=0)

The sum of 100mm events over 99 years : K1 = SUM(X106)

The sum of 50mm events over 99 years: K2 = SUM(X107)



Tables and Figures

Table 1. Examples of crop pests and diseases associated with specific climatic conditions

Target Pest/disease Climate favouring outbreak 

Cattle Rift valley fever Moist conditions
Groundnut (Arachis) Aflatoxin Dry spell during pod filling
Potato (Solanum 
tuberosum L.)

Late Blight (Phytophthora 
infestans)

Moist conditions

Maize (Zea mays) Maize streak Virus Moist conditions
Cassava (Manihot 
eculenta)

Cassava Mosaic Virus Moist conditions

Sorghum (Sorghum 
bicolor (L.) Moench)

Mould/smut (Fusarium
moniliforme J. Sheld)

Dryer conditions

Sorghum Charcoal rot (Macrophomina 
phaseolina)

Soil moisture stress 

Cattle Sleeping sickness 
(Tripanosomiasis)

Rainfall and temperature

Common Bean 
(Phaseolus vulgaris)

Root rots (Pythium spp) Free water in soil post-
germination

Chick-pea (Cicer 
arietinum)

Stem rot (Sclerotinia 
sclerotiorum (Lib.) de Bary.)

Cool and wet conditions

Banana (Musa spp.) Black Sigatoka (Mycosphaerella 
fijiensis Morelet)

High relative humidity and water 
on leaves

Pearl Millet (Pennisetum 
glancum)

Smut (Tolyposporium 
pennicillariae)

Warm temperature, moderate 
humidity and low windspeed

Pearl Millet Ergot (Claviceps fusiformis) Moderate minimum temperatures 
and water on leaves 

Morton, 2007; Reddy and Sulochanamma, 2008; Fry and Goodwin, 1997; Nene, 1979; Ford and 
Leggate, 1961; Rogers et al., 1996; Jésus et al., 2008; Mouliom Pefora, 1991; Kousik et al., 1988; 
Thakur et al., 1991; Haware, 1990



Table 2. Sample locations with number of years with heavy-rainfall events (simulated by MarkSim) per 99 years

Main Season Other Season Average

MarkSim 
ID

Country Latitude Longitude Start Day number for 
monitoring start 

of season

50mm over 
2 days

100mm over 
3 days

Start Day number 
for monitoring 
start of season

50mm over 
2 days

100mm over 
3 days

50mm over 
2 days

100mm over 
3 days

(a) Central Kenya -1.168 37.949 March 32 36 22 September 213 53 34 45 28

(b) Central Kenya -0.514 37.069 March 32 36 17 September 213 24 6 30 12

(c) Tanzania -3.310 37.485 March 32 37 9 September 213 9 1 23 5

(d) Western Kenya 0.640 35.783 Feb - April 32 20 4 Aug-Oct 213 15 0 18 2

(e) Uganda 0.490 30.223 March 32 36 10 September 213 39 5 38 8

(f) Uganda 1.585 33.865 March 32 1 0 September 213 0 0 1 0

(g) Uganda 3.049 30.865 March 32 37 7 September 213 48 13 43 10

(h) Burundi -4.130 30.032 March - April 60 67 17 Sept - Oct 244 36 12 52 15

(j) Rwanda -1.992 30.470 March - April 60 38 6 Sept - Oct 244 32 5 35 6

(j) Burundi -2.522 30.024 March - April 60 No Data No Data Sept - Oct 244 No Data No Data

(k) Burundi -3.397 29.671 March - April 60 29 2 Sept - Oct 244 17 3 23 3

(l) Rwanda -2.631 28.981 March - April 60 20 0 Sept - Oct 244 18 1 19 1

(m) Burundi -2.884 29.199 March - April 60 33 4 Sept - Oct 244 27 8 30 6

(n) Burundi -3.616 30.007 March - April 60 45 8 Sept - Oct 244 23 2 34 5

(o) Rwanda -1.575 29.561 March - April 60 28 3 Sept - Oct 244 14 1 21 2

(p) Rwanda -1.676 30.108 March - April 60 31 3 Sept - Oct 244 16 1 24 2

(q) Uganda -1.214 30.041 March 32 19 4 September 213 19 3 19 4

(r) Uganda -0.574 30.361 March 32 22 0 September 213 14 1 18 1

(s) Western Kenya -0.574 34.576 Feb - April 32 34 6 Aug-Oct 213 29 8 32 7

(t) Western Kenya -0.524 35.165 Feb - April 32 37 8 Aug-Oct 213 23 2 30 5

(u) Western Kenya 0.149 34.669 Feb - April 32 41 7 Aug-Oct 213 44 16 43 12

(v) Western Kenya 0.157 34.282 Feb - April 32 29 4 Aug-Oct 213 45 3 37 4

(w) Uganda 0.637 33.087 March 32 28 2 September 213 29 2 29 2

(x) Uganda -0.229 31.656 March 32 24 7 September 213 28 0 26 4



Table 3. RMS stations in Rwanda with available rainfall data

Station Start date Finish date Years with at least 
1 month missing

Kigali January 1998 December 2008 0
Gisenyi March 2002 December 2008 0
Gikongoro January 1998 December 2008 7
Byumba January 2007 December 2008 0
Kamembe January 2004 May 2009 0



Table 4. Percentage of bean growing areas in East Africa susceptible to root rots

Country Total Bean Growing Areas (Ha) Susceptible (Ha) %

Burundi 2,648,000 841,000 32
DRC 17,304,000 32,000 0
Kenya 13,655,000 1,248,000 9
Rwanda 2,197,000 929,000 42
Tanzania 10,825,000 45,000 0
Uganda 16,310,000 2,136,000 13



Table 5 Comparison of number of seasons with heavy-rainfall events using observed and simulated
(MarkSim) daily rainfall data for four locations in East Africa

# of 
years

% of main seasons with % of other seasons with
50mm over 

2 days
100mm 

over 3 days
50mm over 

2 days
100mm 

over 3 days
Katumani Eastern Kenya
Observed 41 22 5 27 5
Simulated 99 35 13 45 14
p-value** 0.12 0.15 0.04 0.12
Kabete Central Kenya
Observed 30 47 20 17 3
Simulated 99 39 11 22 7
p-value** 0.48 0.21 0.51 0.46
Namulonge Uganda
Observed* 32 19 3 19 3
Simulated 99 25 7 13 1
p-value** 0.45 0.42 0.43 0.40
Kigali Rwanda
Observed 11 36 0 18 0
Simulated 99 36 6 22 5
p-value** 1.00 0.40 0.76 0.45
Main season: a, b,c = March; d = Mid-March early April. Other season: a, b,c = September; d = Mid-Sept-
early Oct.
* 1991 main season observations not available but other season (September-November) observations were 
available
** The p-value is the significance level for the test that the two proportions are equal.



Table 6. Comparison of total number of seasons with rainfall events and season by season 
comparison of absence/presence of events 1998-2008 at Kigali

Rainfall 
event

# of seasons Percentage of seasons
Match

False 
Presence

False 
Absence TRMM Observed TRMM Observed

100mm in 3 
days

0 0 0 0 22 0 0

50mm in 3 
days

12 12 55 55 12 5 5

40mm in 3 
days

16 17 73 77 17 2 3

35mm in 3 
days

17 19 77 87 16 2 4

30mm in 3 
days

19 21 86 95 18 1 3

25mm in 3 
days

20 21 91 95 19 1 2

n = 22



Figure 1. Combination of crop intensity and population density to focus on bean areas 
susceptible to root rots. Pink signifies non-bean areas; grey areas excluded according to 
two criteria; light green areas are excluded by one criterion; dark green areas satisfy both 
criteria.



Figure 2. Locations of MarkSim simulations in bean areas susceptible to root rots.
Meteorological stations shown as red circle, MarkSim simulation locations shown as 
black circles (sample locations given in Table 2 are identified by letters in parenthesis). 
Pink signifies non-bean areas; white areas excluded according to one or two criteria; 
olive green areas satisfy both criteria.



Figure 3. Probability of rainfall events exceeding 50mm in 3 week post-germination 
susceptible period. MarkSim simulation locations shown as black circles. White = non-
bean areas; grey = excluded according to one or two criteria; yellow = < 20%; green = 
20-30%; blue = 30 – 40%; dark blue = > 40%



Figure 4. TRMM rainfall total for Rwanda: February-April 20097

                                                
7 "The images and data used in this study were acquired using the GES-DISC Interactive Online 
Visualization ANd aNalysis Infrastructure (Giovanni) as part of the NASA's Goddard Earth Sciences 
(GES) Data and Information Services Center (DISC)."
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1 Summary


This paper seeks to establish the concept that the analysis of high temporal resolution meteorological data adds value to the investigation of the effect of climatic variability on the prevalence and severity of agricultural pests and diseases. Specifically we attempt to improve disease potential maps of root rots in common beans, based on a combination of inherent susceptibility and the risk of exposure to critical weather events. We achieve this using simulated datasets of daily rainfall to assess the probability of heavy rainfall events at particular times during the cropping season. We then validate these simulated events with observations from meteorological stations in East Africa. We also assess the utility of remotely sensed daily rainfall estimates in near real time for the purposes of updating the risks of these events over large areas and for providing warnings of potential disease outbreaks.


We find that simulated rainfall data provide the means to assess risk over large areas but there are too few datasets of observed rainfall to definitively validate the probabilities of heavy-rainfall events generated using rainfall simulations such as those generated by MarkSim. We also find that selected satellite rainfall estimates are unable to predict observed rainfall events with any power, but data from a sufficiently dense network of rain gauges is not available in the region. Despite these problems we show that remotely sensed rainfall estimates may provide a more realistic assessment of rainfall over large areas where rainfall observations are not available, and alternative satellite estimates should be explored.


2 Introduction

Pests and diseases are a major cause of low productivity in crops and livestock worldwide (Oerke et al., 1995; ) and particularly in Sub Saharan Africa where there are few resources to invest in protection in the form of pesticides, vaccines etc (Williamson et al., 2008; Homewood et al, 2006; Otsyula et al., 2004).


A number of pest and disease outbreaks are triggered by climatic factors (Table 1). For some biotic stresses the general seasonal conditions are most important while for others the timing of rainfall or dry spells within a season is crucial when they coincide with susceptible periods of plant or animal growth - such as in the case of aflatoxins (Aspergillus spp.) in groundnuts (Arachis hypogaea). Risk management is an integral component of coping with the effects of natural hazards (Baez and Mason, 2008) and the use of meteorological data is among the risk management strategies available to producers to help assess the probability of events that foster the transmission or prevalence of pests and diseases. The analysis and monitoring of extreme weather events, and where possible their prediction, can help researchers, extension agents, farmers and pastoralists invest in the most appropriate risk management strategies (Cooper et al., 2008) and prepare for the effects of changes in climates (Garrett et al., 2009).

Table 1 somewhere here


In this paper we focus on one example of a disease which is triggered by particular climatic conditions. The fungal disease bean root rot complex (Pythium spp., Fusarium spp. phaseoli, Rhizoctonia solani) has a major impact on bean yields throughout its range in Africa (Otsyula, 1994). Each year, the disease affects the livelihoods of millions of people who depend on beans for food security and income (Wortmann et al., 1998).

The impact of the disease varies through time. In some years, incidence is relatively low, in others entire crops are wiped out (CIAT, 1992). The distribution and severity of the disease throughout the East African region is related to the intensity of bean cultivation, the human population density, soil properties and rainfall (Otsyula and Buruchara, 2001; Wortmann et al., 1998). The disease varies widely with location; one area may be disease-free while others are hit badly (Buruchara and Rusuku, 1992). This heterogeneity obstructs adaptation of protective practices, because broad remedies become cumbersome and inefficient (Ojiem, 2006). In addition protection may penalise yield or quality; resistant or tolerant bean varieties may not be preferred (Otsyula et al., 2003), or seed producers are unable to respond to demand for resistant varieties (Otsyula et al., 2004). Cultural practices to cope with disease risk respond slowly to variations in actual risk of disease or where causality is poorly understood (Spence, 2003), which may vary significantly during a season depending on growing season rainfall (CIAT, 1992).


Maps showing the importance of root rots were produced in 1998 based on expert knowledge and some modelling of soil, human population and farming system data (Wortmann et al., 1998), but climatic factors were not considered. Root rots infestation requires free water in the root-zone of the soil since the most important pathogen (Pythium spp) is water-borne (Pieczarka and Abawi, 1978). Research in Rwanda over three growing seasons observed that three-day rainfall totals of at least 50mm and up to 130mm coincided with plant loss rates of up to 55% (of susceptible varieties). The one season where no 3-day rainfall events greater than 30mm were observed experienced far lower plant losses (CIAT, 1992). The timing of the events was crucial (Abawi et al., 1985) with the period between 17 and 38 days after planting  being the most sensitive (Pers. Comm., Buruchara, 6th September 2005).

New datasets and tools developed since the creation of the original maps of root rot incidence allow for the more accurate representation of population and land use and for the simulation and analysis of daily weather events (Cooper et al., 2008; Jones et al., 2002). 


The objectives of the research presented in this paper are twofold. The first objective is to produce disease potential maps, based on a combination of inherent susceptibility and the risk of exposure to critical weather events within a general vulnerability framework (Alwang et al., 2001). Susceptibility to root rots is determined by up to date and high resolution spatial datasets of human population density and the intensity of bean cultivation in bean producing areas of East Africa. Risk of exposure maps show the likelihood of experiencing rainfall events during specific periods of the growing season in susceptible areas. The output of this objective allows accurate targeting of resistant cultivars or other husbandry techniques throughout the region, and quantitative insights from new models showing current and likely future incidence.

The second objective is to assess the possibility of within season monitoring of rainfall events over large areas using satellite-based rainfall estimating instruments. This would offer a flexible basis on which to improve predictive models through the continued acquisition of rainfall data especially when combined with information on the severity of root rots in any particular area. 

3 Materials and Methods


This study concentrated on the East African countries most affected by root rots in beans: Rwanda, Burundi, the Democratic Republic of the Congo, Uganda, Tanzania and Kenya. Further targeting was achieved by the development of a new map of areas susceptible to root rots in beans based on population density and the intensity of bean cultivation.

The probability of experiencing heavy rainfall events in the early growing season was assessed at key locations within the susceptible areas using daily rainfall observations simulated by the MarkSim (Jones et al., 2002) software and analyzed for high intensity events using the InStat + software (University of Reading, 2008). MarkSim has been applied in the region for crop simulation modeling (Jones and Thornton, 2000) but has not been used for the analysis of disease risk. The likelihood of simulated high rainfall events were then compared with rainfall observations from meteorological stations in Kenya, Uganda and Rwanda.


Finally satellite measurements were assessed for use in further validating the risk surfaces and for their suitability for in-season monitoring of rainfall events.

3.1 Assessing the risk of root rots in East African bean producing areas

3.1.1 Areas susceptible to bean root rots

The association between root rot severity and human population density, intensity of cultivation and soil properties were based on a model derived from data collected for the atlas of common bean production in Africa (Wortmann, et al., 1998). Bean producing areas have not been captured since 1998 and we assume that production areas have not changed markedly in East Africa relative the late 1990’s.


We have updated the original root rot map using more recent data on population density – the Gridded Population of the World Version 3 (Center for International Earth Science Information Network, 2005) - and the SAGE Agricultural lands map for cropping intensity, based on the percentage of a 5 arc minute cell that is cropped (Ramankutty et al., 2008).Threshold values for crop intensity and human population density were used to further restrict the area of analysis. Values of 40% crop intensity and 200 persons per km2 were chosen. These were then combined using simple map algebra in ArcMap (ESRI) software to create a map showing areas with both high human population density and high bean crop intensity (Figure 1).


3.1.2 Risk of exposure to heavy rainfall events

Rainfall during the first few weeks of plant development has a spatial component but is difficult to capture using conventional maps of annual or monthly rainfall totals. Averages mask the variability of rainfalls within the year or month as well as the variation between years. To obtain a better indication of risk one must analyse daily weather data and specifically daily rainfall observations during the critical period immediately after germination.


Observations from meteorological stations are often not available, incomplete or in non-susceptible locations. Sample locations were selected in areas susceptible to root rots in each bean producing area (Figure 2) and simulations of daily weather were generated for 99 years using the MarkSim Software. For each of the 24 locations the normal planting dates were identified using expert knowledge (Table 2) (pers. comm., Rubyogo 20th December 2005, Chirwa 15th December 2005).

The daily rainfall data were exported from MarkSim and imported into the Instat+ software (University of Reading, 2008). The Instat+ software has analysis capabilities designed for climatic data, specifically the identification of specific events. The rules for assessing risk of root rot were more complex than traditional rainy events but a combination of these events allowed the calculation of risk. The first step was to define a monitoring period which started approximately 1 month before the normal planting dates and identify the start of rains; a figure of 20mm over two days was used for the onset of the rainy season. The next step was to determine the absence or presence of events with over 50mm over 2 days in the period between day 17 and day 38 (after the onset of rains), a more severe test – 100mm over three days was also used. Since all locations had bimodal rainfall patterns the test was applied to both rainy seasons in the calendar year and the number of seasons where the rainfall events were experienced was recorded (Table 2). MarkSim successfully simulated daily rainfall in all but one of the locations for which the software had no climate data.

Table 2 somewhere here


These frequencies were used to produce maps of risk over large areas when the point data were interpolated to produce a risk surface (Figure 3). The frequency values were interpolated in the ArcGIS software for all susceptible areas using inverse distance weighting with a distance decay power value of 2 and using 12 nearest neighbours.

3.2 Validation of exposure risk 

Little information has been collected on the frequency of root rot incidence in beans across East Africa. Data collected in Rwanda in the early 1990’s (Buruchara and Rusuku, 1992) concentrated on yield loss rather than frequency, reports from this period showed that the severity of losses was greater in some regions in Rwanda than others, which might be due to differences in rainfall patterns. However differences between neighbouring fields were also observed which serves to remind that causality of incidence is complex, with soil fertility being another important factor.

3.2.1 Comparison between observed and simulated heavy-rainfall events


Observed daily rainfall data were made available for this study in four locations in East Africa: Katumani in Eastern Province in Kenya, Kabete in Central Province in Kenya, Namulonge in Central Uganda and Kigali in Rwanda (Figure 2). The longest time series available was for Katumani, where 41 years of continuous observations between 1961 and 2001 were recorded. Daily rainfall amounts were observed for 30 years in Kabete, 32 years in Namulonge and for 11 years at Kigali.

The observations were imported into the Instat + software and the same process followed as in section 3.1.2. to determine the number of heavy rainfall events during the post germination period. Additional simulations were generated using MarkSim at the same locations as the meteorological stations. At such sites MarkSim can use observed climatic normals for rainfall, or the values built in to the software. We decided to use those built-in, to match the simulations at sites where there is no station (cf. Hartkamp et al., 2003).

3.3 TRMM validation of risk surfaces


Alternative sources of ‘observed’ daily rainfall are satellite based instruments that measure the characteristics of clouds to estimate rainfall on the ground. One of these sources – the Tropical Rainfall Measuring Mission (TRMM) – is assessed here as an alternative to ground measuring stations to validate the assessment of heavy-rainfall events and to investigate the potential of remotely sensed rainfall estimates for in-season monitoring and early warning of root rot outbreaks.

The Tropical Rainfall Monitoring Mission has five principal instruments: a precipitation radar (PR), a microwave imager (TMI), a visible and infra-red scanner (VIRS), a cloud and earth radiant energy scanner (CERES), and a lightning imaging scanner (LIS) (NASA, 2006). The principal dataset used in this section is the daily rainfall estimates dataset derived from the 3B42 v6 algorithm which combines data from TRMM microwave and infra-red instruments (Huffman et al., 2007). The data are available from 1998 and have a spatial resolution of 0.25º x 0.25º between latitudes of 50ºS and 50ºN.

Given the relatively small number of years that TRMM has been providing observations the source is not suitable for validating the probability of heavy-rainfall events in a season (using MarkSim simulated daily rainfall). Instead we assessed the quality of the TRMM daily rainfall data using rainfall observations from stations in just one country in East Africa – Rwanda.


Observed rainfall data from 5 stations of the Rwandan Meteorological Service (RMS) were available and TRMM daily rainfall estimates data were extracted for the period 1998-2008 for grid cells that coincided with the RMS stations. For the purposes of monitoring conditions conducive to root rots in beans the most appropriate indicator for validating the TRMM estimates was a three-day running rainfall total during the growing seasons. Rainfall records for Kigali airport meteorological station were complete for the period 1998-2008 while there were gaps for the stations at Gisenyi and Gikongoro and serious gaps for Byumba (Table 3). Data for Kamembe airport had yet to be verified so were not analysed. 

Table 3 somewhere here


We focussed the analysis on the start of the growing seasons which are between February and April inclusive and between September and November inclusive. Different rainfall amounts were chosen ranging from 100mm over three days (which is rarely encountered) to 25mm over 3 days which was almost always exceeded.


4 Results


4.1 Risk of root rots in East African bean producing areas


4.1.1 Areas susceptible to bean root rots


The areas susceptible to bean root rots are concentrated in two main regions (a) the highlands of Rwanda, Burundi and South western Uganda, and; (b) the northern shore of lake Victoria and the highlands of western Kenya. There are other smaller areas scattered in Central and Eastern provinces of Kenya and in the Kilimanjaro massif in north-eastern Tanzania. In terms of the proportion of the bean areas in each country affected in terms of area the most susceptible was Rwanda while the least susceptible was DRC (Table 4).

Table 4 somewhere here


Figure 1 somewhere here

Figure 2 somewhere here


4.1.2 Risk of exposure to heavy rainfall events


The locations with the highest risk of heavy rainfall events during the period immediately after germination are in southern Burundi, a small area in North-west Uganda, the Kakamega area of western Kenya and in Kitui in Eastern Province of Kenya. Areas with lower risk are in western Rwanda and south west Uganda. Despite a range of environments from humid to semi-arid the range of probabilities is not large, and surprisingly some of the locations with the highest probabilities of heavy-rainfall events (such as eastern Kenya and eastern Rwanda) do not have high seasonal rainfall totals.

Figure 3 somewhere here


4.2 Validation of exposure risk 


4.2.1 Comparison between observed and simulated heavy-rainfall events


The differences between the numbers of seasons with heavy rainfall events in the susceptible period according to observed and simulated daily rainfall were not large and did not show consistency between locations or seasons (Table 5). For instance at Katumani there were more ‘risky’ seasons according to the simulated data using MarkSim than with the observed data, this is also true in the case of Kigali. In contrast for Kabete there were more risky seasons using observed data than the simulated daily data for the main season but this was reversed in the second season – a similar pattern to the comparison at Namulonge. 

Table 5 somewhere here


The comparison between the observed and simulated rainfall events is between two binomial distributions, where each season either experiences a heavy rainfall event or not. Our hypothesis was that the probability of the heavy rainfall event was the same for each distribution. This hypothesis was only rejected at the 5% confidence level for the second season at Katumani (Table 5). 

4.3 TRMM validation of risk surfaces


Results are organised for each of the four stations in Rwanda: Kigali, Gisenyi, Gikongoro and Byumba. Greatest attention was paid to the results obtained from Kigali since it had the longest and best quality weather data available.

A plot of the 3-day running totals (calculated daily) from the TRMM and observed rainfall data at Kigali showed a lack of a clear relationship between the totals from TRMM and from meteorological stations (R2=0.204). The TRMM data give slightly higher 3-day totals although there are more extreme rainfall events (e.g. > 100mm) in the observed dataset. 

Graphs were also produced for individual years, with a range of predictive capacities of the observed cumulative rainfall using just TRMM estimates between R2=0.05 in 2008 and 0.64 in 2002. 


These predictive models investigate the relationship between the TRMM wet events and the observed wet events on a daily basis, but they do not show the differences in the experience of at least one heavy rainfall event during the growing season. An alternative approach is to analyse threshold values of 3-day rainfall events in any particular growing season (i.e. the same as that used to examine the rainy events in the analysis of the TRMM data conducted previously by the authors).


The summary of the presence of different events (Table 6) shows that the amount of trigger events is broadly similar between the observed and the TRMM rainfall data. When the individual years are analysed separately the coincidence between the two datasets is not as strong, especially for the 50mm trigger rainfall events where the trigger rainfall amount is estimated correctly in only 55% of the 3 monthly periods. Observed data for Byumba station were only available for 2007 and 2008 limiting the power of the comparison with the TRMM data. More data were available for the station at Gisenyi but the number of matches is low compared to Kigali, with the number of false negatives very large. There are gaps in the observed rainfall data for Gikongoro, with only 2008, 2003, 1999 and all but the first week of 1998 complete. All the other years have some months missing and only the second season in 2004 was complete. As with Gisenyi the number of false absences in Gikongoro is far greater than the false presences of heavy rainfall events. The seasonal totals of the observed rainfall were also greater than the TRMM estimates.

The TRMM therefore provides little power for predicting these three-day rainfall events at the meteorological stations.

Table 6 somewhere here


5 Discussion


The research presented in this paper outlines a new use of simulations of daily rainfall, and specifically a new use of the MarkSim software. The value of these simulated data is increased when they are combined with climatic statistical and spatial tools and they demonstrate the use of such data for targeting both strategic research and specific interventions to tackle crop pests and diseases. This research is particularly pertinent in the face of potential changes in rainfall patterns over the coming decades (van de Steeg et al., 2009).

Although no ‘ground truthing’ was possible in this study, the map of the probability of root rots appears consistent with the previous map of root rot severity (Wortmann, et al., 1998). Nevertheless the revised map can be improved by using MarkSim simulations of daily rainfall over all the susceptible areas rather than interpolating between the 24 locations that were sampled in this study as well as alternative interpolation methods such as kriging (e.g. Grimes et al., 1999). This will require a more automated procedure for the identification of heavy rainfall events. The variation in risk of heavy rainfall events shown here does not show a simple correlation with annual or seasonal rainfall averages and thus provides a novel tool for targeting the promotion of root rot resistant bean varieties and other cultural practices for modifying the soil structure and improving soil fertility. This tool can be modified for other pests and diseases and for other crops or agricultural technologies. Nevertheless the research here has shown that the spatial scale at which pests and diseases are manifest will limit the usefulness of the tool since MarkSim currently has a spatial resolution of 18km. Differences in root rot incidence and severity within and between plots are due mainly to the build up of pathogens in the soil – which is linked to the soil fertility status and the cultivation history of a particular plot – and whether a variety is resistant to root rots. 

Plant breeding for resistance to root rots has been ongoing within the Pan African Bean Research Alliance (PABRA), but there is often a trade-off between traits. In addition the resources destined for crop improvement need to be targeted to those areas where particular constraints are most severe, both now and in the future. It is currently difficult to link the rainfall event probability map to actual incidence and severity of root rots in the region, due to a lack of routine monitoring of outbreaks of the disease. If monitoring were carried out it would allow for better calibration of the model and also an even better understanding of the risk. This understanding will be vital for modeling the incidence of root rots in beans under future climates, especially for areas where the disease is currently uncommon.

The validation of the MarkSim heavy rainfall events with rainfall observations from four stations shows that the differences between the two sources were in most cases not statistically significant. Access to a longer series of observed rainfall data would be needed to comprehensively assess the simulated dataset in those areas where the differences between the observed and simulated datasets are large. We are unable to reject the hypothesis that the distributions of risky rainfall events are the same between the observed and simulated daily rainfall datasets. We therefore tentatively conclude that simulated daily rainfall can be used for producing these kinds of risk assessments, but that the validation could be improved by increasing the sample of meteorological stations.


The rainfall amounts over the two and three day time steps used in this analysis are derived from a combination of the probability of rain days as well as the amount of rain falling on a rainy day. The first of these is derived from the analysis of the daily data for the meteorological station used to define the climate type, while the amounts of rainfall depend on the monthly mean rainfall values. Within MarkSim there is the possibility of updating the monthly mean rainfall amounts for specific locations and further research could consider the use of summaries of observed data (climate normals) instead of the interpolated means which are in the MarkSim database. The thresholds for heavy-rainfall events are based on trials carried out in Rwanda and the results of the risk model are dependent on the rainfall threshold as well as the planting date. Further research should therefore assess the sensitivity of the model to both of these factors as well as the size of rainfall events simulated by the MarkSim software (e.g. Dixit et al., this issue). Specifically research is required on the effect of the gamma curves which are an essential characteristic of each type of climate within MarkSim and which define the probabilities of rainfall events.

The biggest problem for the comparison is the relatively short duration of the observed rainfall records, especially in Kigali which showed the largest differences between the two datasets. The other problem is the very small number of cases in the analysis which was restricted due to the lack of meteorological stations with available observed daily rainfall. Access to a larger set of meteorological observations would allow for a better assessment of the relationship.


Our study of four stations in Rwanda shows that rainfall estimates from TRMM satellite instruments are poor predictors of rainfall observations, coinciding with the findings of Dinku et al. (2008). The most complete set of rainfall observations were available for the Kigali Airport station. Of the six different trigger values the worst comparison was the 50mm value, which was incorrectly estimated for 10 of the 22 seasons – either positively estimated when there was no event observed or not estimated when the ground station recorded the event. As the trigger value decreased the number of seasons when the value was estimated also increased, which is not surprising due to the frequent occurrence of these less intense rainfall events.

Comparisons at the other stations were less revealing because the numbers of complete seasons of observed rainfall were fewer than at Kigali. Both the stations in Gikongoro and Gisenyi were at the edge of the 25km x 25km TRMM cell, and given the small size of tropical thunderstorms it is possible that rainfall associated with cloud recorded by the TRMM sensor was not recorded at the meteorological station. Indeed, given the large decay in correlation of rainfall over relatively small distances in the tropics (Lebel et al., 1992), especially over short periods the utility of a single rain gauge to represent a large area (such as those covered by TRMM pixels) is limited, and the TRMM may give a better estimate of areal rainfall. While the spatial variation in rainfall has been shown over different time periods (Grimes and Pardo-Igúzquiza, 2010) there is no research on the spatial variation of these heavy rainfall events over short distances such as could be used to explain the differences between the TRMM areal estimates and the meteorological stations. The AGRHYMET cluster of rainfall gauges ( Lebel at al., 1992) or the rain gauges managed by the Ethiopian National Meteorological Agency (Grimes and Pardo-Igúzquiza, 2010) offer such an opportunity to study the local differences in the frequency of heavy-rainfall events.

TRMM rainfall data are particularly suited to in-season rainfall monitoring due to the short time between data capture and publication. Typically the data are available the next day when using the TRMM Online Visualisation and Analysis System (TOVAS)
. The time period can be set so that cumulative seasonal totals are displayed (Figure 4) or for shorter periods to monitor within season events. These values would still need to be validated using observations although the time between observation, verification and publication would need to be improved. Alternative rainfall estimates from satellite exist, such as NASA’s Prediction Of World Energy Resources POWER
, but this has a considerable delay between capture and publishing and is thus currently not suited to in-season monitoring of rainfall. Other rainfall products estimated using satellite instruments include the Tropical Applications of Meteorological Satellites (TAMSAT) method applied to thermal infra-red imagery from the Meteosat platform (Thorne at al., 2001). The algorithm used in the TAMSAT method is locally calibrated and has performed well in Africa in comparison with more complex algorithms like those used to produce the TRMM rainfall estimates (Teo and Grimes, 2007). The TAMSAT group provides routine products at 10-day, monthly and seasonal timescales; the dekadal and monthly products are available from the EUMETSAT portal. The TAMSAT estimates thus offer some promise for in-season monitoring for root rots but would imply access to daily rainfall estimates. 

Figure 4 somewhere here.

To conclude, in this paper we have shown the value of long-term meteorological rainfall observations for assessing the risk of outbreaks of pests and diseases.  We have also shown that where data are sparse simulations may be are able to provide an acceptable alternative. More rainfall observations from meteorological stations are needed to check the validity of the results from the simulated data and hence to improve the confidence in the results from the simulations.   The methods used have shown that these data enable maps of areas susceptible to root rot in beans to be produced, by showing the long term probability of heavy rainfall events during a critical period after germination.  These, in turn, can help assess long term risks or can be used for early-warning within a particular season.
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8 Appendix

The process in the Instat+ software is as follows:


· In Excel run the INSTAT macro to get the MarkSim output in a format suitable for the Instat+ software.


· Import excel file into the Instat+ software (noting the MarkSim value for 9998 for February 29 which should be *** in the Instat+ software).


· Find the start of the rains in the main season – given a start date find days where the cumulative rainfall total over two days is equal or above 20mm.


· Get germination date – assume 10 days after onset of rains for planting, and a further 7 days for germination, therefore add 17 days to start of rains.


· Get end of risk period – assume period of maximum risk 3 weeks after germination; therefore add 21 days to the germination date.


· Seek events – in the Instat+ software it is easier to search for events using the start of the rains procedure, we simply change the threshold value from 20mm over to 2 days to 50mm over 2 days or 100mm over three days.


· Record number of events – every event is logged; we sum the log of events and see how many years out of 99 are risky.


Tables and Figures


Table 1. Examples of crop pests and diseases associated with specific climatic conditions


		Target

		Pest/disease

		Climate favouring outbreak 



		Cattle

		Rift valley fever

		Moist conditions



		Groundnut (Arachis)

		Aflatoxin 

		Dry spell during pod filling



		Potato (Solanum tuberosum L.)

		Late Blight (Phytophthora infestans)

		Moist conditions



		Maize (Zea mays)

		Maize streak Virus 

		Moist conditions



		Cassava (Manihot eculenta)

		Cassava Mosaic Virus

		Moist conditions



		Sorghum (Sorghum bicolor (L.) Moench)

		Mould/smut (Fusarium


moniliforme J. Sheld)

		Dryer conditions



		Sorghum

		Charcoal rot (Macrophomina phaseolina)

		Soil moisture stress 



		Cattle

		Sleeping sickness (Tripanosomiasis)

		Rainfall and temperature



		Common Bean (Phaseolus vulgaris)

		Root rots (Pythium spp)

		Free water in soil post-germination



		Chick-pea (Cicer arietinum)

		Stem rot (Sclerotinia sclerotiorum (Lib.) de Bary.)

		Cool and wet conditions



		Banana (Musa spp.)

		Black Sigatoka (Mycosphaerella fijiensis Morelet)

		High relative humidity and water on leaves



		Pearl Millet (Pennisetum glancum)

		Smut (Tolyposporium pennicillariae)

		Warm temperature, moderate humidity and low windspeed



		Pearl Millet

		Ergot (Claviceps fusiformis)

		Moderate minimum temperatures and water on leaves 





Morton, 2007; Reddy and Sulochanamma, 2008; Fry and Goodwin, 1997; Nene, 1979; Ford and Leggate, 1961; Rogers et al., 1996; Jésus et al., 2008; Mouliom Pefora, 1991; Kousik et al., 1988; Thakur et al., 1991; Haware, 1990

Table 2. Sample locations with number of years with heavy-rainfall events (simulated by MarkSim)  per 99 years

		

		

		

		

		Main Season

		Other Season

		Average



		MarkSim ID

		Country

		Latitude

		Longitude

		Start

		Day number for monitoring start of season

		50mm over 2 days

		100mm over 3 days

		Start

		Day number for monitoring start of season

		50mm over 2 days

		100mm over 3 days

		50mm over 2 days

		100mm over 3 days



		(a)

		Central Kenya

		-1.168

		37.949

		March

		32

		36

		22

		September

		213

		53

		34

		45

		28



		(b)

		Central Kenya

		-0.514

		37.069

		March

		32

		36

		17

		September

		213

		24

		6

		30

		12



		(c)

		Tanzania

		-3.310

		37.485

		March

		32

		37

		9

		September

		213

		9

		1

		23

		5



		(d)

		Western Kenya

		0.640

		35.783

		Feb - April

		32

		20

		4

		Aug-Oct

		213

		15

		0

		18

		2



		(e)

		Uganda

		0.490

		30.223

		March

		32

		36

		10

		September

		213

		39

		5

		38

		8



		(f)

		Uganda

		1.585

		33.865

		March

		32

		1

		0

		September

		213

		0

		0

		1

		0



		(g)

		Uganda

		3.049

		30.865

		March

		32

		37

		7

		September

		213

		48

		13

		43

		10



		(h)

		Burundi

		-4.130

		30.032

		March - April

		60

		67

		17

		Sept - Oct

		244

		36

		12

		52

		15



		(j)

		Rwanda

		-1.992

		30.470

		March - April

		60

		38

		6

		Sept - Oct

		244

		32

		5

		35

		6



		(j)

		Burundi

		-2.522

		30.024

		March - April

		60

		No Data

		No Data

		Sept - Oct

		244

		No Data

		No Data

		

		



		(k)

		Burundi

		-3.397

		29.671

		March - April

		60

		29

		2

		Sept - Oct

		244

		17

		3

		23

		3



		(l)

		Rwanda

		-2.631

		28.981

		March - April

		60

		20

		0

		Sept - Oct

		244

		18

		1

		19

		1



		(m)

		Burundi

		-2.884

		29.199

		March - April

		60

		33

		4

		Sept - Oct

		244

		27

		8

		30

		6



		(n)

		Burundi

		-3.616

		30.007

		March - April

		60

		45

		8

		Sept - Oct

		244

		23

		2

		34

		5



		(o)

		Rwanda

		-1.575

		29.561

		March - April

		60

		28

		3

		Sept - Oct

		244

		14

		1

		21

		2



		(p)

		Rwanda

		-1.676

		30.108

		March - April

		60

		31

		3

		Sept - Oct

		244

		16

		1

		24

		2



		(q)

		Uganda

		-1.214

		30.041

		March

		32

		19

		4

		September 

		213

		19

		3

		19

		4



		(r)

		Uganda

		-0.574

		30.361

		March

		32

		22

		0

		September

		213

		14

		1

		18

		1



		(s)

		Western Kenya

		-0.574

		34.576

		Feb - April

		32

		34

		6

		Aug-Oct

		213

		29

		8

		32

		7



		(t)

		Western Kenya

		-0.524

		35.165

		Feb - April

		32

		37

		8

		Aug-Oct

		213

		23

		2

		30

		5



		(u)

		Western Kenya

		0.149

		34.669

		Feb - April

		32

		41

		7

		Aug-Oct

		213

		44

		16

		43

		12



		(v)

		Western Kenya

		0.157

		34.282

		Feb - April

		32

		29

		4

		Aug-Oct

		213

		45

		3

		37

		4



		(w)

		Uganda

		0.637

		33.087

		March

		32

		28

		2

		September

		213

		29

		2

		29

		2



		(x)

		Uganda

		-0.229

		31.656

		March

		32

		24

		7

		September

		213

		28

		0

		26

		4





Table 3. RMS stations in Rwanda with available rainfall data


		Station

		Start date

		Finish date

		Years with at least 1 month missing



		Kigali

		January 1998

		December 2008

		0



		Gisenyi

		March 2002

		December 2008

		0



		Gikongoro

		January 1998

		December 2008

		7



		Byumba

		January 2007

		December 2008

		0



		Kamembe

		January 2004

		May 2009

		0





Table 4. Percentage of bean growing areas in East Africa susceptible to root rots


		Country

		Total Bean Growing Areas (Ha)

		Susceptible (Ha)

		%



		Burundi

		2,648,000

		841,000

		32



		DRC

		17,304,000

		32,000

		0



		Kenya

		13,655,000

		1,248,000

		9



		Rwanda

		2,197,000

		929,000

		42



		Tanzania

		10,825,000

		45,000

		0



		Uganda

		16,310,000

		2,136,000

		13





Table 5 Comparison of number of seasons with heavy-rainfall events using observed and simulated (MarkSim) daily rainfall data for four locations in East Africa


		

		# of years

		% of main seasons with

		% of other seasons with



		

		

		50mm over 2 days

		100mm over 3 days

		50mm over 2 days

		100mm over 3 days



		Katumani Eastern Kenya



		Observed

		41

		22

		5

		27

		5



		Simulated

		99

		35

		13

		45

		14



		p-value**

		

		0.12

		0.15

		0.04

		0.12



		Kabete Central Kenya



		Observed

		30

		47

		20

		17

		3



		Simulated

		99

		39

		11

		22

		7



		p-value**

		

		0.48

		0.21

		0.51

		0.46



		Namulonge Uganda



		Observed*

		32

		19

		3

		19

		3



		Simulated

		99

		25

		7

		13

		1



		p-value**

		

		0.45

		0.42

		0.43

		0.40



		Kigali Rwanda



		Observed

		11

		36

		0

		18

		0



		Simulated

		99

		36

		6

		22

		5



		p-value**

		

		1.00

		0.40

		0.76

		0.45





Main season: a, b,c = March; d = Mid-March early April. Other season: a, b,c = September; d = Mid-Sept-early Oct.

* 1991 main season observations not available but other season (September-November) observations were available


** The p-value is the significance level for the test that the two proportions are equal.


Table 6. Comparison of total number of seasons with rainfall events and season by season comparison of absence/presence of events 1998-2008 at Kigali


		Rainfall event

		# of seasons

		Percentage of seasons

		Match

		False Presence

		False Absence 



		

		TRMM

		Observed

		TRMM

		Observed

		

		

		



		100mm in 3 days

		0

		0

		0

		0

		22

		0

		0



		50mm in 3 days

		12

		12

		55

		55

		12

		5

		5



		40mm in 3 days

		16

		17

		73

		77

		17

		2

		3



		35mm in 3 days

		17

		19

		77

		87

		16

		2

		4



		30mm in 3 days

		19

		21

		86

		95

		18

		1

		3



		25mm in 3 days

		20

		21

		91

		95

		19

		1

		2





n = 22
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		Figure 1. Combination of crop intensity and population density to focus on bean areas susceptible to root rots. Pink signifies non-bean areas; grey areas excluded according to two criteria; light green areas are excluded by one criterion; dark green areas satisfy both criteria.
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		Figure 2. Locations of MarkSim simulations in bean areas susceptible to root rots. Meteorological stations shown as red circle, MarkSim simulation locations shown as black circles (sample locations given in Table 2 are identified by letters in parenthesis). Pink signifies non-bean areas; white areas excluded according to one or two criteria; olive green areas satisfy both criteria.
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		Figure 3. Probability of rainfall events exceeding 50mm in 3 week post-germination susceptible period. MarkSim simulation locations shown as black circles. White = non-bean areas; grey = excluded according to one or two criteria; yellow = < 20%; green = 20-30%; blue = 30 – 40%; dark blue = > 40%
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		Figure 4. TRMM rainfall total for Rwanda: February-April 2009








� International Center for Tropical Agriculture (CIAT)



� Rwanda Meteorological Services (RMS)



� Consultant, Perth, Australia



� http://disc2.nascom.nasa.gov/Giovanni/tovas/



� http://earth-www.larc.nasa.gov/power/



� Get the start of the rains, 20mm over 2 days after 60 days : RUN X1-X99;RANge 0.85;SUM  2  20;FIRst 60;DAYs X100



Check that the start of the rains is in the first season: X101 = -(X100<=180)



Get the start of the risky period : X102 = (X100+17) * X101



Get the end of the risky period: X103 = (X102+21) * X101



Get the first day that experiences 100mm (over this and the previous 2 days) : RUN X1-X99;RANge 0.85;SUM  3  100;FIRst X102;DAYs X104



Get the first day that experiences 50mm (over this and the previous day): RUN X1-X99;RANge 0.85;SUM  2   50;FIRst X102;DAYs X105



If the day when 100mm was recorded over 3 days is in the risky period then give the value 1 (where FALSE = 0 and TRUE = -1 in INSTAT) : X106 = -(X104<=X103)+(X104=0)



If the day when 50mm was recorded over 2 days is in the risky period then give the value 1 (where FALSE = 0 and TRUE = -1 in INSTAT): X107 = -(X105<=X103)+(X105=0)



The sum of 100mm events over 99 years : K1 = SUM(X106)



The sum of 50mm events over 99 years: K2 = SUM(X107)



� "The images and data used in this study were acquired using the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) as part of the NASA's Goddard Earth Sciences (GES) Data and Information Services Center (DISC)."







